Ion

iIs of Integration Debt

Ive Analys

DN
NN N\

\ g A\ , \ gan| W
L\ \An«%mﬁf/ // i

<@ 7/

Itat
ENUIT

\

-

o
S
o
=
©)
O
C
LL
>
o0
T
@)
({8
o
Ly
(7))
0
O
=
®
O
O
T
O
C
T

A Quant
4

W\

A
A

The Hidden Costs of CTRM Fragmentation: A
Quantitative Analysis of Integration Debt

Executive Summary

CTRM fragmentation rarely begins as a strategic choice. It begins as a workaround: a
point solution for a new commodity, an acquisition that must be ‘made to work’, a risk
engine that is better than the incumbent, a logistics tool that the operations team
refuses to give up (for reasons that are, inconveniently, valid). Over time, these
reasonable decisions compound into an ecosystem where the real product is no longer
trading—it is integration.

This whitepaper quantifies the operational and financial burden of maintaining
fragmented CTRM environments through five anonymized case studies spanning
metals, petrochemicals, and energy. Across the cases, integration complexity behaves
like technical debt: it grows non-linearly, attracts recurring ‘interest payments’ within IT
and operations, and becomes harder to refinance the longer itis ignored.

Key findings from the case studies:

e Integration debt consumed 35-45% of annual IT spend in mature fragmented
environments, largely in maintenance, incident response, and change
management.

e Datainconsistencies materially impacted outcomes—including settlement
adjustments, risk misstatements, and regulatory reporting rework.

e Operational latency increased as organizations added controls to compensate
for system boundaries (manual reconciliations, shadow spreadsheets,
duplicated approvals).

e The most expensive integrations were not the most complex technically;
they were the ones that sat on critical process seams (trade capture - risk >
scheduling > invoicing).

The paper provides:

e Aframework for measuring integration costs and ‘integration debt interest’.
e Apractical Total Cost of Fragmentation (TCF) calculator.
e A modernization approach that reduces risk while improving time-to-value.

e Aview of how ENTRADE’s unified platform architecture reduces integration
debt and improves data integrity and operational speed.

A Short History: From Monoliths to Ecosystems (and Back to
Coherence)

CTRM has always been a response to structural complexity spanning multiple
commodities, pricing mechanisms, delivery terms, counterparties, and regulatory
regimes.

Early CTRM deployments leaned heavily toward monolithic systems—large
implementations designed to be the ‘single source of truth’.

Then the world changed.

e Commodities desks diversified

e Regulatory reporting expanded

e Markets became more electronic

e Risk and valuation expectations increase

e Cloud and APIs made ‘best-of-breed’ feel not only possible, but responsible

The industry moved toward ecosystems: a trade capture tool here, a risk engine there, a
scheduling system over there, plus ETRM add-ons, Bl layers, and a growing
constellation of integrations.

Fragmentation was not inherently wrong. In many cases it was rational.

The problem is what happens next: integration becomes permanent infrastructure.
Interfaces become business logic. Exceptions become process. And every new
requirement—market entry, product expansion, reporting requirements—arrives as a
change request to the integration layer.

At some point, the organization is no longer running CTRM software. Itis running a
CTRM integration program with trading attached.

The Industry Pains: What Fragmentation Really Breaks

Across the case studies, the most persistent pains were not cosmetic inefficiencies;
they were structural, showing up consistently across data, process, change, cost, and
speed.

1) Data Integrity Becomes Probabilistic

In a unified environment, data quality is a governance problem. In a fragmented
environment, it becomes a statistical one.

Each system boundary introduces:

e Mapping rules (often undocumented)
e Timing gaps (batch vs real-time)

e Rounding and unit conversions

e Reference data drift

e Versioning mismatches

The resultis not ‘bad data’ as a constant state. It is data that is correct until it is not,
and the organization spends time proving correctness rather than acting on
information.

2) Process Seams Become Risk Seams

Most control failures happen at handoffs.
Fragmented CTRM ecosystems create handoffs everywhere:

e Trade capture » confirmations
e Trade capture = risk

e Risk~> P&L

e Scheduling > inventory

e Inventory - invoicing

e Invoicing > ERP

Each seam requires reconciliation. Each reconciliation requires ownership. Ownership
in fragmented environments is often shared—meaning it is owned by everyone, which is
a polite way of saying no one.

3) Change Becomes Expensive, Slow, and Political

When a new requirement arrives—say a pricing index, fee structure, or regulatory
field—fragmented environments must coordinate changes across:

e Multiple vendors

e Multiple internal teams
e Multiple data models

e Multiple release cycles

The costis not only engineering time. It is the coordination overhead: testing matrices,
sign-offs, UAT across desks, and the inevitable ‘it worked in system A’ conversations.

4) IT Budgets Shift from Innovation to Interest Payments

Integration debt behaves like technical debt, but with a twist: it is distributed across
systems and teams.

The ‘interest’ shows up as:

e Incident response and interface monitoring
e Reconciliation tooling

e Manualworkarounds

e Regression testing for every change

e Vendor support escalations

In mature fragmented environments, these costs become a structural portion of IT
spend—hard to reduce without changing the architecture.

5) Operational Speed Declines as Controls Increase

As fragmentation grows, organizations add controls to compensate:

e More checks

e More approvals

e More reconciliations

e More ‘temporary’ spreadsheets

This is rational risk management. It is also how operational speed quietly dies.

A trader can move quickly. A fragmented operating model cannot.

The CTRM Fragmentation Curve o
ange

A paralysis

Best-of-breed phase

Change lead time (Days)

 /

Number of integrations

Quantifying Integration Debt: A Measurement Framework

To treat fragmentation as a business problem (not a philosophical one), it must be
measurable.

We define Integration Debt (ID) as the accumulated cost of maintaining and operating
system interfaces required to run the end-to-end trade lifecycle.

We split ID into four measurable components:

Build cost (CapEx-like): initial integration development and implementation.
Run cost (OpEXx): ongoing maintenance, monitoring, support, and upgrades.
Exception cost: reconciliations, breaks, manual corrections, and rework.
Opportunity cost: delays to new products and markets, slower financial close
and reporting, and constrained change capacity.

Pobd--

Integration Debt Interest (IDI)

A useful metric is the ‘interest rate’ paid annually on integration debt:

Run cost + Exception cost
Build cost (amortized)

IDI =

In practice, many organizations discover that they are paying an IDI that would make a
credit card company blush.

The Total Cost of Fragmentation (TCF)

We define TCF as the annualized total cost attributable to fragmentation, net of the
baseline cost of running a unified CTRM.

A practical approximation:

TCF = (ITintegration + OpSreconciliation + RiSkmisstatement + Financerework
+ Compliance,eyori) — Baseline,qifieq

Each term can be measured using time tracking, incident logs, and process cycle-time
data.

Where Breaks Cost The Most

Data integrity Financial Operations
impact impact Impact
Trade capture
Risk

Scheduling

Inventory Inventory

Invoicing Invoicing

ERP/GL

LOW COST HIGH COST

Five Anonymized Case Studies (Metals, Petrochemicals, Energy)

The case studies below are anonymized and simplified for clarity. The goalis not to
shame anyone—fragmentation is common—but to quantify patterns.

Case Study 1: Metals Trader with Multi-Vendor Stack

Profile: Mid-sized metals trading firm operating across concentrates and refined
products.

e Systems: trade capture platform + separate risk engine + scheduling tool + ERP
integration + Bl layer
e Interfaces: 28 active integrations

Observed Costs:

e Integration supportteam: 6 FTE
e Annualvendor and middleware spend: high relative to core CTRM license

e Reconciliation workload: daily breaks in pricing and quantity allocations

Impact:

e Month-end financial close extended by 2-3 business days
e Riskreports required manual adjustments during volatile periods

Hidden cost driver: reference data drift between risk and scheduling systems.
Case Study 2: Petrochemicals Desk with Acquisition-Driven Fragmentation

Profile: Global petrochemicals organization with multiple regional systems following
acquisitions.

e Systems: 3 regional CTRMs + central risk reporting + shared ERP
e Interfaces: 40+ integrations, many batch-based

Observed Costs:

e 35-45% of IT budget allocated to integration maintenance and change work
e Highregression testing cost for any change due to cross-system dependencies

Impact:

e Settlement disputes increased due to inconsistent fee and tax logic
e Regulatory reporting required repeated reconciliations across regions

Hidden cost driver: duplicated business logic embedded in interfaces.

Case Study 3: Energy Trader with ‘Best-of-Breed’ Architecture

Profile: Energy trading firm with sophisticated valuation needs.

e Systems: CTRM + specialized valuation + separate confirmation + separate
scheduling

e Interfaces: 22 integrations, some near-real-time
Observed Costs:

e Incident response load concentrated around pricing curves and position
updates

e Significant ‘exception handling’ time in middle office
Impact:

e Risk numbers differed across systems during intraday updates
e Traders lost confidence in dashboards; shadow reporting emerged

Hidden cost driver: timing gaps between batch and event-driven updates.

Case Study 4: Multi-Commodity Organization with Spreadsheet
‘Microservices’

Profile: Multi-commodity firm that outgrew Excel but kept it as glue.

e Systems: core CTRM + multiple spreadsheet-based processes for allocations,
fees, and inventory adjustments

e Interfaces: fewerformalintegrations, many manual transfers

Observed Costs:
e High operational effort in back office
e Audit and control burden increased year-over-year

Impact:
e Rework after audit findings
e Increased key-person risk

Hidden cost driver: manual processes acting as ungoverned integration layer.

Case Study 5: Commodity Group Expansion Without Architectural Reset

Profile: Organization that expanded from one commodity group to several.

e Systems: original CTRM extended with bolt-ons + new commodity-specific tools
e Interfaces: 30+ integrations

Observed Costs:
e Change requests required coordination across multiple teams and vendors
e Testing cycles expanded significantly

Impact:
e New product onboarding slowed
e |Troadmap dominated by ‘keep the lights on’ work

Hidden cost driver: integration complexity grew faster than transaction volume.

Case Study Snapshot
(Anonymized)

Sector Interfaces ‘ Integration | Integration FTE | Break Frequency Y Close Impact
Metals 38 ‘ 8 8 1 Weekly ‘ +2 Days
Petrochemicals ZE \ E ' E 4 Weekly ' +17 Days

i 7Energy 22 7“ 10 o 74 ‘ Daily . +3 Days
Multi-commodity _‘ 22 ‘ . 7 ‘ Weekly . +3 Days
Expansion \ 31 ‘ ‘ [Daily i +2 Days

Illustrative values pattern consistent across cases

10

What the Numbers Tell Us (and What They Do Not)

Across the five cases, the pattern was consistent:

e Integration costs scale with interfaces, not volume. A low-volume desk with
many interfaces can be more expensive than a high-volume desk with fewer.

e Exception costs scale with process criticality. Breaks at settlement and
invoicing seams are disproportionately expensive.

e Opportunity costis usually the largest and the least measured. The inability
to change quickly becomes a strategic constraint.

This paper does not argue that every organization must pursue a single-vendor
monolith. It argues that integration debt must be treated as a measurable liability—
and managed as such.

Total Cost of Fragmentation (TCF) Calculator (Practical Version)

Below is a simplified calculator you can adapt. The goal is directionally accurate
measurement, not academic perfection.

Step 1: Inventory Interfaces and Classify Criticality

Create a list of all integrations and classify each as:

e Tier 1: breaks that impact settlement, risk, regulatory reporting, or invoicing
e Tier 2: breaks thatimpact operations and scheduling
e Tier 3: breaks that impact analytics or convenience reporting

Step 2: Measure Annual Run Cost

Include:

e Integration/middleware licensing

e Vendor support contracts attributable to integrations
e Internal engineering/support FTE time

e Monitoring and incident tooling

Step 3: Measure Exception Cost

Use:

e Break logs (if they exist)
e Reconciliation time per break
e Average cost per hour for middle/back office

e Cost of settlement adjustments and dispute handling

11

Step 4: Estimate Opportunity Cost

Pick two measurable proxies:

e Average lead time to implement a change request (days)
e Number of change requests deferred due to capacity

Then estimate the cost of delays to product launches, reporting, or market entry.

Step 5: Compare Against a Unified Baseline
A unified CTRM still has costs. The pointis to quantify the delta.

Solutions: How to Reduce Integration Debt Without Disrupting the
Business

The most effective modernization programs in the case studies shared three principles.
1) Reduce Seams in the End-to-End Lifecycle
Prioritize unification where seams are most expensive:

e Trade capture > risk
e Scheduling » inventory = invoicing
e Risk > regulatory reporting

2) Standardize Data Models and Reference Data Governance

Even before full consolidation, organizations reduced breaks by:

e Establishing a single reference data master
e Enforcing consistent units, calendars, and pricing curve definitions
e Versioning interfaces and documenting mappings

3) Move from Interface Maintenance to Platform Capability

The goal is not ‘fewer systems’ as a virtue. The goal is reduced integration
dependency for core operations.

In practice, that means selecting a CTRM platform that:

e Coversthe end-to-end lifecycle across commodities
e Maintains a consistent data model
e Provides open APIs for external systems (ERP, exchanges, market data)

e Reduces the need for bespoke interfaces to move core trade data

12

Where the IT Budget Goes

New o
Capabilit
L Capability

Integration
Maintenal

New
Capability

/ Integration
Integration . Maintenance
Maintenance

Core CTRM Core CTRM Core CTRM

Year 1 Year 3 Year 5

Integration debt behaves like recurring interest

Why ENTRADE?® is the Solution

If fragmentation is a liability, the solution is not simply ‘buy new software’. The answer
is an architecture that makes fragmentation unnecessary for core operations.

ENTRADE is designed as a unified, multi-commodity trading and risk management
platform that tracks the lifecycle from deal to billing—allowing the organization to
operate from a consistent data model rather than stitching together competing truths.

What Changes When the Platform is Unified

e Data integrity improves because trade, risk, logistics, and invoicing operate on
consistent definitions.

e Operational speed improves because reconciliations are reduced and
exceptions are handled within a single workflow.

e Change becomes easier because new requirements are implemented once,
not across a network of interfaces.

e IT spend shifts from integration maintenance to capability delivery.

ENTRADE also supports integration where it matters—connecting to exchanges, market
data, and enterprise systems via open APls—without forcing core trade lifecycle
processes to depend on brittle point-to-point interfaces.

Put more plainly: organizations can spend their budgets building trading capability, or
spend them keeping integrations from breaking at 2:00 a.m. The market does not
reward excellence in the second category.

13

Conclusion

Fragmented CTRM ecosystems impose costs that are easy to normalize and hard to
see. They appear as ‘just how things work’: reconciliations, exceptions, delays, and a
permanent integration backlog. But when measured, these costs are neither small nor
inevitable.

By treating integration debt as a quantifiable liability—and by reducing the most
expensive seams—trading organizations can improve data integrity, operational speed,
and change capacity.

Unified platforms like ENTRADE provide a practical path to reduce fragmentation
without sacrificing the flexibility that modern trading demands.

About Enuit

Enuitis a global provider of CTRM/ETRM software for energy and commodity trading
companies. Our award-winning platform, ENTRADE, supports multi-commodity
operations across the full trade lifecycle—from deal capture and risk through logistics,
settlement, and billing, helping front, middle, and back office teams work from a
consistent, trusted data foundation.

With an open API framework and proven integrations across exchanges, market data,
and enterprise systems, Enuit helps trading organizations reduce operational friction,
strengthen controls, and move faster with confidence.

Integration debt is the predictable outcome of running core trading processes across
disconnected systems.

The durable fix is not another interface; it is an ETRM foundation that supports all
commodities, covers the full lifecycle front to back, and integrates cleanly with the
third-party applications your business relies on.

If your organization is ready to reduce fragmentation and operate from a single,
consistent ‘source of truth’, consider what a unified platform architecture can do for
data integrity, operational speed, and change capacity, and evaluate whether ENTRADE
is the right fit for your next stage of growth.

Reach out to us today at info@enuit.com—find out why we have won the Integrated
CTRM solution for the year for four years running by Chartis Research in their Energy50
rankings.

, Chart Chartis
4 Energy50 G/ Energy50 Energy®0 Energy50
, 2024 2023 2022
————— Enuit Enuit

Enuit Enuit

Integrated CTRM
Integrated ETRM Integrated CTRM Platgorm Integrated CTRM Platform

Platform

mailto:info@enuit.com

	The Hidden Costs of CTRM Fragmentation: A Quantitative Analysis of Integration Debt
	Executive Summary
	A Short History: From Monoliths to Ecosystems (and Back to Coherence)
	The Industry Pains: What Fragmentation Really Breaks
	1) Data Integrity Becomes Probabilistic
	2) Process Seams Become Risk Seams
	3) Change Becomes Expensive, Slow, and Political
	4) IT Budgets Shift from Innovation to Interest Payments
	5) Operational Speed Declines as Controls Increase

	Quantifying Integration Debt: A Measurement Framework
	Integration Debt Interest (IDI)
	The Total Cost of Fragmentation (TCF)

	Five Anonymized Case Studies (Metals, Petrochemicals, Energy)
	Case Study 1: Metals Trader with Multi-Vendor Stack
	Case Study 2: Petrochemicals Desk with Acquisition-Driven Fragmentation
	Case Study 3: Energy Trader with ‘Best-of-Breed’ Architecture
	Case Study 4: Multi-Commodity Organization with Spreadsheet ‘Microservices’
	Case Study 5: Commodity Group Expansion Without Architectural Reset

	What the Numbers Tell Us (and What They Do Not)
	Total Cost of Fragmentation (TCF) Calculator (Practical Version)
	Step 1: Inventory Interfaces and Classify Criticality
	Step 2: Measure Annual Run Cost
	Step 3: Measure Exception Cost
	Step 4: Estimate Opportunity Cost
	Step 5: Compare Against a Unified Baseline

	Solutions: How to Reduce Integration Debt Without Disrupting the Business
	2) Standardize Data Models and Reference Data Governance
	3) Move from Interface Maintenance to Platform Capability

	Why ENTRADE® is the Solution
	What Changes When the Platform is Unified

	Conclusion
	About Enuit

